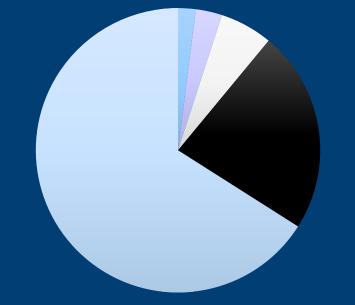
Supercritical CO₂ Carnot Engine for Industrial Waste Heat Recovery and Utilization

Sarah Makuc, E. H. Chimowitz University of Rochester Chemical Engineering Department Rochester, NY, USA

12th European Congress of Chemical Engineering; Florence, Italy: September 18, 2019

UNIVERSITY of ROCHESTER

Agenda


1	Introduction to Problem and Solution
2	Methods and Excel Program
3	Results
4	Conclusion

Introduction: Issue of Low-Grade Waste Heat

- <u>**Problem**</u>: low-grade waste heat emitted to the environment
 - ~66% waste heat is low-grade (< 200C)
 - difficult to utilize effectively
- <u>Solution</u>: supercritical CO₂ Carnot engines
 - Supercritical CO₂ working fluid has a critical temperature of 31.1C
 - "Replace" large cooler duties in process with the Carnot engines

■> 500 C ■ 400-500 C ■ 300-400 C ■ 200-300 C ■ 100-200 C

Figure 1: Interreg Central Europe. Low-grade waste head utilization in the European Union, June 2017.

Methods: Supercritical CO₂ Carnot Engine

- Lower isotherm at critical temperature of 31.1C
- Upper isotherm at lowgrade waste heat temperature
- Straddle critical volume
- Maximize area on P-V plot (available work)

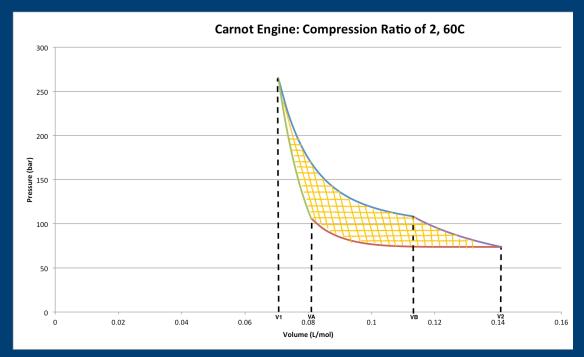


Figure 2: Carnot Cycle on P-V Plot

Methods: Excel Program Engine Sizing Given Process Inputs

 Analytically calculate work of the Carnot cycle using Van der Waals equations of state

$$Q_{H} = \int_{V_{1}}^{V_{B}} \frac{RT_{H}}{V-b} = RT_{H}ln(\frac{V_{B}-b}{V_{1}-b})$$

where $b = \frac{1}{8} \frac{RT_{c}}{P_{c}}$ Equation 1
 $W = Q_{H}(1 - \frac{T_{C}}{T_{H}})$ Equation 2

- Reversible adiabatic and isothermal steps assumed
- <1% difference to numerical solution

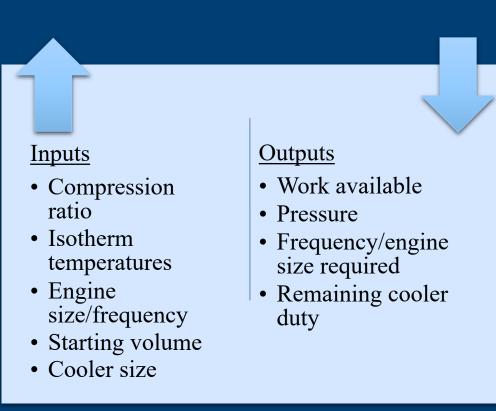


Figure 3: Excel Program Method

Methods: Excel Program

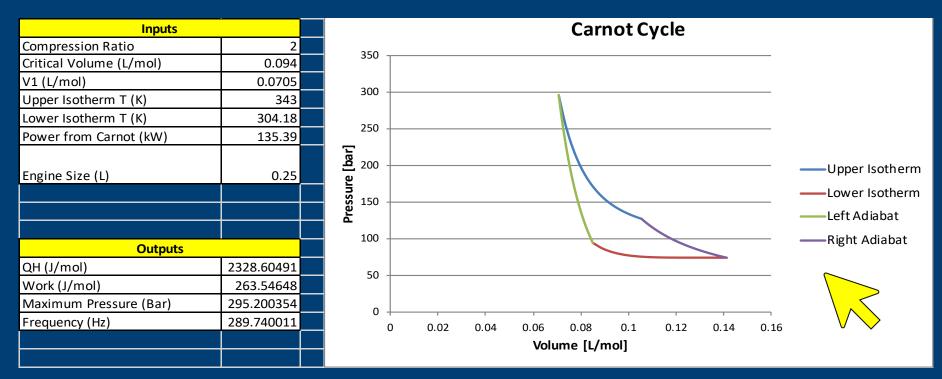


Figure 4: Developed Excel Program

Methods: Example Process Analysis

- Toluene disproportion process (J.T. Banchero B.D. Smith (Ed.) R.J. Hengstebeck. *Disproportionation of toluene*, 1969.)
- Decrease the duty of the major cooler (208.69 kW) of the process
 - Stream with a heat capacity of 2.44 kW/C at 125.53C
- For efficiency purposes, the Carnot cycle would take in a hot stream no cooler than 60C
- In practice, <u>any process</u> could be analyzed in a similar manner

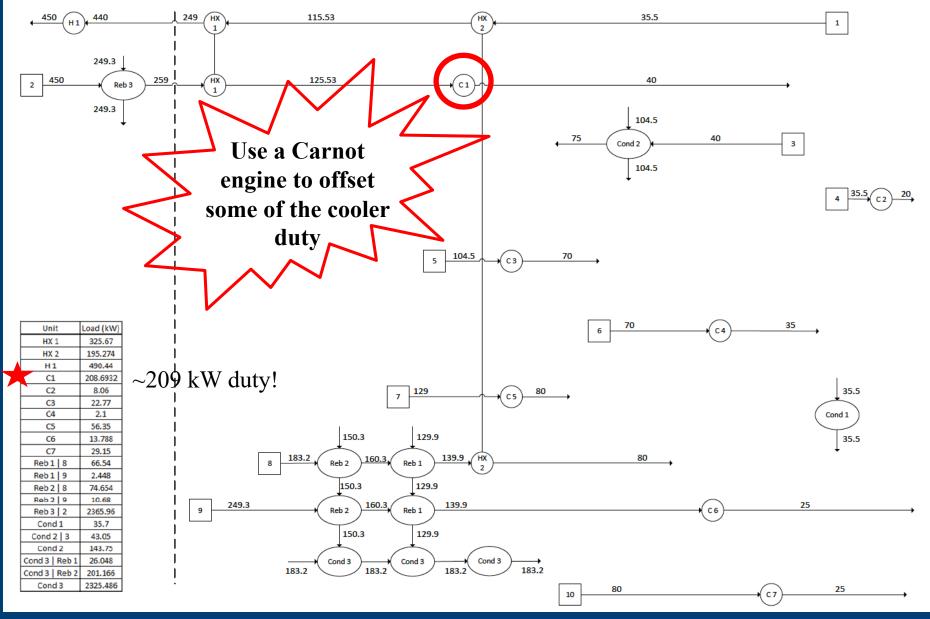


Figure 5: Toluene Process- Streams Diagram

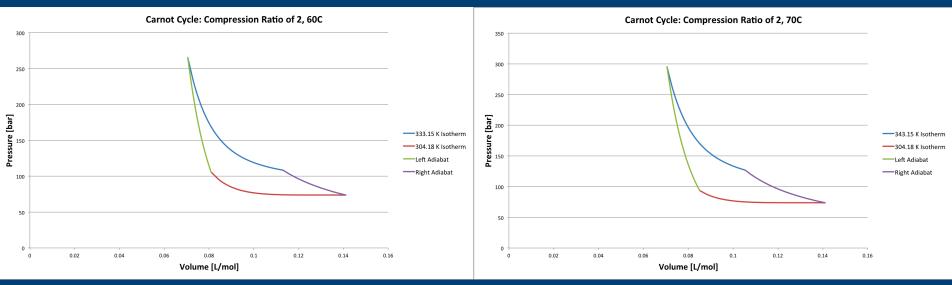


Figure 6: 60C Lower Isotherm

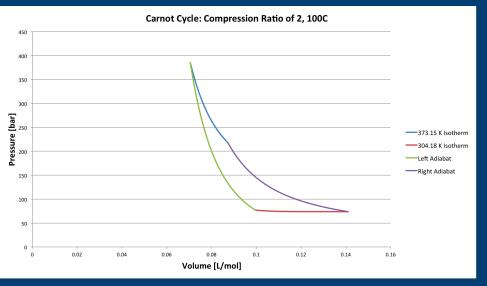


Figure 7: 70C Lower Isotherm

Results: Decreasing 208.69 kW Cooler

Figure 8: 100C Lower Isotherm

Results: Decreasing 208.69 kW Cooler

• Compression ratio of 2 and a frequency of 50 Hz:

Upper Isotherm Temp (C)	Work (J/mol)	Power (kW/mol)	Max Pressure (bar)	Engine Size (L)
60	224.14	11.21	266	2.01
70	264.00	13.20	296	1.45
100	270.56	13.53	386	0.644

- By increasing the temperature of the input stream there is:
 - roughly a 21% increase in available power
 - <u>significant</u> increase in pressure required to go from 70C to 100C (30 bar)
 - **<u>small</u>** increase in available work (2%)
 - Carnot efficiency increases from 9%, to 11%, to 18%

Results: Decreasing 208.69 kW Cooler

- Cooling the stream from 125.53C to 70C releases 135.49 kW
 - P = Heat Capacity * Temperature Change
 - P = (2.44 kW/C) * (125.53-70C) = 135.49 kW
- Cooler still required to decrease the temperature from 70C to the desired final value of 40C
 - P = (2.44 kW/C) * (70-40 C) = 73.2 kW

Generate 135.49 kW, <u>Reduce Cooler Duty by 65%</u>

Results: Calculating Required Frequency Given Engine Size

Engine Size (L)	Hz (s ⁻¹)
0.25	289.7
0.5	144.9
1	72.4
1.5	48.3
2	36.2
4	18.1
6	12.05

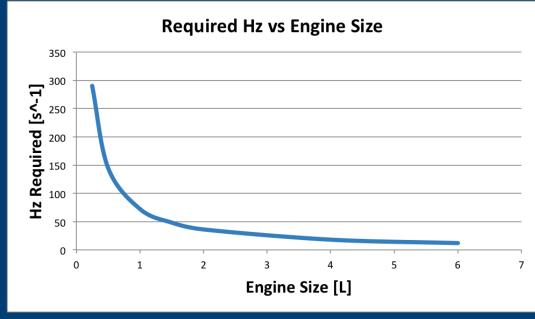
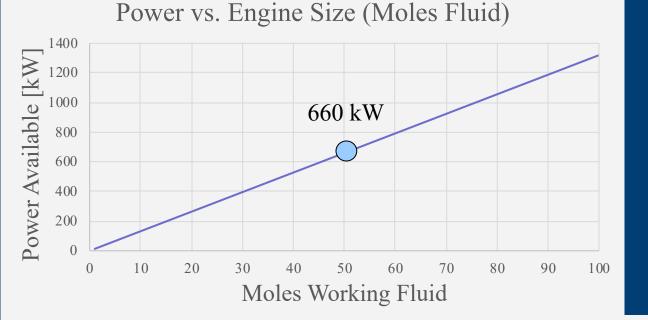
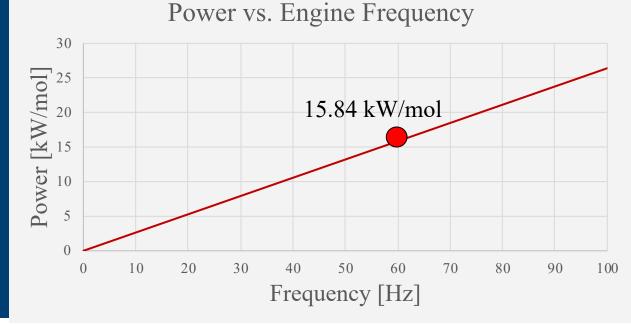


Figure 9: Engine Frequency and Size


Results: Energy Savings

 1.45 L engine that provides 135.49 kW, 24 hours a day for 300 days/year amounts to <u>975,528</u> <u>kWh/year</u>

Electricity Source	Price (\$/MWh)	Cost Savings per Year (\$)
USA National Average	72.4	70,628
Conventional Coal	98.8	96,285
Biomass	95.3	92,968
Onshore Wind	48	48,825
Solar Thermal	126.6	123,502


U.S. Energy Information Administration. Levelized Cost and Avoided Cost of New Generation Resources in the Annual Energy Outlook 2018, March 2018.

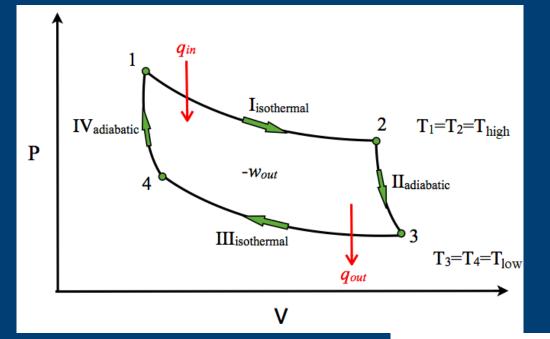
Results: Power Potential

Average household power meters ~5W

Conclusion

- Through the use of supercritical CO₂ Carnot cycles, the ability to recover and utilize a significant portion of the waste is realized
- The developed Excel program includes a simple calculation to determine the engine size and/or frequency required to utilize this waste heat
- Decrease net external energy requirement and environmental emissions

Acknowledgements and Sources


Thank you to the University of Rochester Chemical Engineering Department

Works Cited [1] J.T. Banchero B.D. Smith (Ed.) R.J. Hengstebeck. *Disproportionation of toluene*, 1969.

[2] Eldred H. Chimowitz Madeleine R. Laitz, F. Douglas Kelley. *Critical CO₂ Carnot Cycle for Waste Heat Utilization*, 2017.

[3] U.S. Energy Information Administration. *Levelized Cost and Avoided Cost of New Generation Resources in the Annual Energy Outlook 2018*, March 2018.

Visual of the Carnot Engine

Q is supplied from the process streams

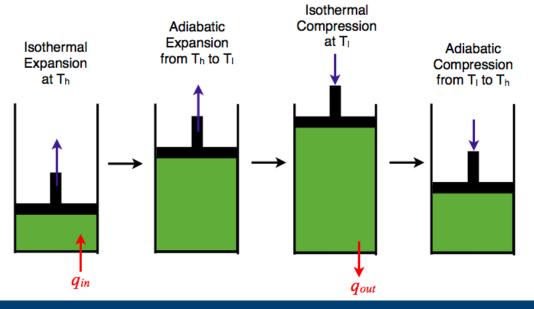


Image Credits: chem.libretexts.org

