David R. Harding

Professor; Senior Scientist, Laboratory for Laser Energetics
Cambridge, England, PhD, 1986

250 East River Road
(585) 275-5850


CHE 421: Thin Films

Recent Publications

Wang, W.; Jones, T. B.; Harding, D. R.“On-Chip Double Emulsion Droplet Assembly Using Electrowetting-on-Dielectric and Dielectrophoresis,” Fusion Science Technology 2011, 59, 240–249.

Bei, Z.; Jones, T. B.; Harding, D. R. “Electric Field Centering of Double-Emulsion Droplets Suspended in a Density Gradient,” Soft Matter 2010,6, 2312–2320.

Harding, D. R.; Jones, T. B.; Bei, Z.; Wang, W.; Chen, S. H.; Gram, R. Q.; Moynihan, M.; Randall, G. “Microfluidic Methods for Producing Millimeter-Size Fuel Capsules for Inertial Fusion,” Materials Research Society Fall Symposium Proceedings 2010.

Jones, T. B.; Gram, R.; Kentch, K.; Harding, D. R. “Capillarity and Dielectrophoresis of Liquid Deuterium,” Jounal of Physic D: Applied Physics 2009 42, 225505.

Bei, Z.-M. ; Jones, T. B.; Tucker-Schwartz, A.; Harding, D. R. “Electric Field Mediated Droplet Centering,” Applied Physics Letters 2008, 92, 184101.

Research Overview

My research is defined by a specific application: development of a suitable fuel for nuclear fusion, specifically, inertial confinement fusion. This effort requires research in several technical disciplines: vapor deposition and microfluidics, technologies that are used to make polymer capsules that contain the fusion fuel; and cryogenics and condensed matter physics, to study the crystal-growth mechanism, structure and properties of the deuterium-tritium fusion fuel. An emphasis of this research is to scale current technologies for mass production, to support an inertial fusion energy program. The most challenging aspect of this work is to determine how to deliver the cryogenic fuel, which is at a temperature of -255oC, into a reactor where the temperature will be over 5000oC, without affecting the fuel!